Single-photon cooling at the limit of trap dynamics: Maxwell’s demon near maximum efficiency
نویسندگان
چکیده
We demonstrate a general and efficient informational cooling technique for atoms that is an experimental realization of a one-dimensional Maxwell’s demon. The technique transfers atoms from a magnetic trap into an optical trap via a single spontaneous Raman transition that is discriminatively driven near each atom’s classical turning point. In this way, nearly all of the atomic ensemble’s kinetic energy in one dimension is removed. We develop a simple analytical model to predict the efficiency of transfer between the traps and provide evidence that the performance is limited only by particle dynamics in the magnetic trap. Transfer efficiencies up to 2.2% are reported. We show that efficiency can be traded for phase-space compression, and we report compression up to a factor of 350. Our results represent a 15-fold improvement over our previous demonstration of the cooling technique.
منابع مشابه
Narrow line cooling: finite photon recoil dynamics.
We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0-3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon-recoil limit. For positive detuning, the cloud d...
متن کاملInGaAs/InP Single-Photon Avalanche Diodes show low dark counts and require moderate cooling
InGaAs/InP devices suitable as Single-Photon Avalanche Diodes (SPADs) for photon counting and photon timing applications in the near-infrared provide good detection efficiency and low time jitter, together with fairly low darkcount rate at moderately low temperatures. However, their performance is still severely limited by the afterpulsing effect, caused by carriers trapped into deep levels dur...
متن کاملSingle-photon molecular cooling
We propose a general method to cool the translational motion of molecules. Our method is an extension of single photon atomic cooling which was successfully implemented in our laboratory. Requiring a single event of absorption followed by a spontaneous emission, this method circumvents the need for a cycling transition and can be applied to any paramagnetic or polar molecule. In our approach, t...
متن کاملMaxwell’s demon and quantum-dot cellular automata
Quantum-dot cellular automata ~QCA! involves representing binary information with the charge configuration of closed cells comprised of several dots. Current does not flow between cells, but rather the Coulomb interaction between cells enables computation to occur. We use this system to explore, quantitatively and in a specific physical system, the relation between computation and energy dissip...
متن کاملA Collision Between Dynamics and Thermodynamics
Philosophers of science have found the literature surrounding Maxwell’s demon deeply problematic. This paper explains why, summarizing various philosophical complaints and adding to them. The first part of the paper critically evaluates attempts to exorcise Maxwell’s demon; the second part raises foundational questions about some of the putative demons that are being summoned.
متن کامل